Lecture 02 12.2/12.3 Vector algebra and the dot product

Jeremiah Southwick

January 16, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The direction is where the arrow points and the length is how long the arrow is.

A vector models any application where force is involved: velocity, displacement, work, etc.

Since it doesn't matter where we draw a vector, we will usually place the initial point at the origin. This is called *standard position*.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Standard Position

Definition

If a vector \vec{v} goes from (x_1, y_1, z_1) to (x_2, y_2, z_2) , then the same vector in standard position goes from (0, 0, 0) to $(x_2 - x_1, y_2 - y_1, z_2 - z_1)$. In this case we write

$$\vec{\mathbf{v}} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle.$$

 $\langle u_1, u_2, u_3 \rangle = \langle v_1, v_2, v_3 \rangle \iff u_1 = v_1, u_2 = v_2, \text{ and } u_3 = v_3$

Length/Magnitude

The length of a vector is simply the distance from its initial point to its terminal point.

Definition

If $\vec{v} = \langle v_1, v_2, v_3 \rangle$, then the length of \vec{v} is

$$\|\vec{\mathbf{v}}\| = |\vec{\mathbf{v}}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

Example

The length of $\langle 7, 3, -2 \rangle$ is $\sqrt{49 + 9 + 4} = \sqrt{62}$.

Given two vectors, we will now describe different ways to combine them, which will turn the set of vectors into something we can manipulate algebraically.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Given two vectors, we will now describe different ways to combine them, which will turn the set of vectors into something we can manipulate algebraically.

Definition

If $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$, $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$, and $k \in \mathbb{R}$, then we have the following operations: Vector addition:

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Given two vectors, we will now describe different ways to combine them, which will turn the set of vectors into something we can manipulate algebraically.

Definition

If $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$, $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$, and $k \in \mathbb{R}$, then we have the following operations: Vector addition:

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Scalar multiplication:

 $k\vec{\mathbf{u}} = \langle ku_1, ku_2, ku_3 \rangle.$

Given two vectors, we will now describe different ways to combine them, which will turn the set of vectors into something we can manipulate algebraically.

Definition

If $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$, $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$, and $k \in \mathbb{R}$, then we have the following operations: Vector addition:

$$\vec{\mathbf{u}} + \vec{\mathbf{v}} = \langle u_1 + v_1, u_2 + v_2, u_3 + v_3 \rangle$$

Scalar multiplication:

$$k\vec{\mathbf{u}} = \langle ku_1, ku_2, ku_3 \rangle.$$

This means we can add two vectors and multiply vectors by numbers.

These operations have a geometric meaning.

Vector addition corresponds to following first one vector and then the other to the resulting location. Scalar multiplication corresponds to stretching/shrinking a vector without changing its direction.

Example

Let $\vec{v} = \langle 2, 4 \rangle$ and $\vec{u} = \langle -4, 6 \rangle$. Find the component form of $\frac{1}{2}(\vec{v} + \vec{u})$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Let $\vec{v} = \langle 2, 4 \rangle$ and $\vec{u} = \langle -4, 6 \rangle$. Find the component form of $\frac{1}{2}(\vec{v} + \vec{u})$.

$$\frac{1}{2}(\vec{\mathbf{v}}+\vec{\mathbf{u}})=\frac{1}{2}(\langle 2,4\rangle+\langle -4,6\rangle)=\frac{1}{2}\langle -2,10\rangle=\langle -1,5\rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Properties (page 712)

1.
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$

2. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
3. $\vec{u} + \vec{0} = \vec{u}$
4. $\vec{u} + (-\vec{u}) = \vec{0}$
5. $0\vec{u} = \vec{0}$
6. $1\vec{u} = \vec{u}$
7. $a(b\vec{u}) = (ab)\vec{u}$
8. $a(\vec{u} + \vec{v}) = a\vec{u} + a\vec{v}$
9. $(a + b)\vec{u} = a\vec{u} + b\vec{u}$

Properties

3. $\vec{u} + \vec{0} = \vec{u}$

Properties

We can change the length of a vector with scalar multiplication, so we are interested in vectors that have length 1. These vectors have a specific name.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We can change the length of a vector with scalar multiplication, so we are interested in vectors that have length 1. These vectors have a specific name.

Definition

A vector $\vec{\mathbf{v}}$ is a <u>unit vector</u> if its length is 1.

We can change the length of a vector with scalar multiplication, so we are interested in vectors that have length 1. These vectors have a specific name.

Definition

A vector $\vec{\mathbf{v}}$ is a <u>unit vector</u> if its length is 1.

Example $\vec{v} = \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle$ is a unit vector

We can change the length of a vector with scalar multiplication, so we are interested in vectors that have length 1. These vectors have a specific name.

Definition

A vector $\vec{\mathbf{v}}$ is a <u>unit vector</u> if its length is 1.

Example

$$\vec{\mathbf{v}} = \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle \text{ is a unit vector because}$$
$$\|\vec{\mathbf{v}}\| = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2} = 1.$$

In 3D, we have special unit vectors which point in the direction of the x-, y- and z-axes.

In 3D, we have special unit vectors which point in the direction of the x-, y- and z-axes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

The standard unit vectors are $\vec{i}=\langle 1,0,0\rangle, \vec{j}=\langle 0,1,0\rangle$, and $\vec{k}=\langle 0,0,1\rangle.$

In 3D, we have special unit vectors which point in the direction of the x-, y- and z-axes.

Definition

The standard unit vectors are $\vec{i}=\langle 1,0,0\rangle,\vec{j}=\langle 0,1,0\rangle$, and $\vec{k}=\langle 0,0,1\rangle.$

We can break up any vector as

 $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle = \langle v_1, 0, 0 \rangle + \langle 0, v_2, 0 \rangle + \langle 0, 0, v_3 \rangle = v_1 \vec{\mathbf{i}} + v_2 \vec{\mathbf{j}} + v_3 \vec{\mathbf{k}}.$

Note that we can always change a (nonzero) vector to a unit vector in the same direction by dividing by its length, that is, $\left(\frac{1}{\|\vec{\mathbf{v}}\|}\right)\vec{\mathbf{v}}$ is a unit vector in the direction of $\vec{\mathbf{v}}$.

Note that we can always change a (nonzero) vector to a unit vector in the same direction by dividing by its length, that is, $\left(\frac{1}{\|\vec{\mathbf{v}}\|}\right)\vec{\mathbf{v}}$ is a unit vector in the direction of $\vec{\mathbf{v}}$.

Example

Find a unit vector in the direction of $\vec{u} = 2\vec{i} + 3\vec{j} - 4\vec{k}$.

Note that we can always change a (nonzero) vector to a unit vector in the same direction by dividing by its length, that is, $\left(\frac{1}{\|\vec{\mathbf{v}}\|}\right)\vec{\mathbf{v}}$ is a unit vector in the direction of $\vec{\mathbf{v}}$.

(日) (同) (三) (三) (三) (○) (○)

Example

Find a unit vector in the direction of $\vec{\mathbf{u}} = 2\vec{\mathbf{i}} + 3\vec{\mathbf{j}} - 4\vec{\mathbf{k}}$. $\|\vec{\mathbf{u}}\| = \sqrt{2^2 + 3^2 + (-4)^2} = \sqrt{29}$. Thus the vector $\frac{\vec{\mathbf{u}}}{\|\vec{\mathbf{u}}\|} = \frac{2}{\sqrt{29}}\vec{\mathbf{i}} + \frac{3}{\sqrt{29}}\vec{\mathbf{j}} - \frac{4}{\sqrt{29}}\vec{\mathbf{k}}$

is a unit vector in the direction of \vec{u} .

$\S12.3$ The dot product

▲□▶ ▲□▶ ▲国▶ ▲国▶ 三国 - のへで

The *dot product* of two vectors gives us geometric information about the angle between the vectors.

Definition Let $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$. Then $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = u_1 v_1 + u_2 v_2 + u_3 v_3$

is the dot product of \vec{u} and \vec{v} .

The *dot product* of two vectors gives us geometric information about the angle between the vectors.

Definition

Let $\vec{\mathbf{u}} = \langle u_1, u_2, u_3 \rangle$ and $\vec{\mathbf{v}} = \langle v_1, v_2, v_3 \rangle$. Then

$$\vec{\mathbf{u}}\cdot\vec{\mathbf{v}}=u_1v_1+u_2v_2+u_3v_3$$

is the dot product of \vec{u} and \vec{v} .

The dot product of two vectors is a number, not a vector.

Dot product example

$\begin{array}{l} \mathsf{Example} \\ \langle 1,-2,-1\rangle \cdot \langle -6,2,-3\rangle = \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dot product example

Example $(1, -2, -1) \cdot (-6, 2, -3) = (1)(-6) + (-2)(2) + (-1)(-3) = -7.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The dot product tells us something about the angles between two vectors.

The dot product tells us something about the angles between two vectors.

Let \vec{u} and \vec{v} be nonzero vectors. If θ is the angle between \vec{u} and \vec{v} , then

$$\theta = \arccos\left(rac{ec{\mathbf{u}}\cdotec{\mathbf{v}}}{\|ec{\mathbf{u}}\|\|ec{\mathbf{v}}\|}
ight).$$

(ロ)、(型)、(E)、(E)、 E) の(の)

The dot product tells us something about the angles between two vectors.

Let \vec{u} and \vec{v} be nonzero vectors. If θ is the angle between \vec{u} and \vec{v} , then

$$\theta = \arccos\left(\frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}}{\|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\|}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Two other ways of saying this are

$$\cos(heta) = rac{ec{\mathbf{u}}\cdotec{\mathbf{v}}}{\|ec{\mathbf{u}}\|\|ec{\mathbf{v}}\|} \qquad ext{or}$$

The dot product tells us something about the angles between two vectors.

Let \vec{u} and \vec{v} be nonzero vectors. If θ is the angle between \vec{u} and \vec{v} , then

$$\theta = \arccos\left(\frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}}{\|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\|}\right).$$

Two other ways of saying this are

$$\cos(\theta) = \frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}}{\|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\|} \quad \text{or} \quad \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\| \cos(\theta).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The dot product tells us something about the angles between two vectors.

Let \vec{u} and \vec{v} be nonzero vectors. If θ is the angle between \vec{u} and \vec{v} , then

$$\theta = \arccos\left(\frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}}{\|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\|}\right).$$

Two other ways of saying this are

$$\cos(heta) = rac{ec{\mathbf{u}} \cdot ec{\mathbf{v}}}{\|ec{\mathbf{u}}\| \|ec{\mathbf{v}}\|} \qquad ext{or} \qquad ec{\mathbf{u}} \cdot ec{\mathbf{v}} = \|ec{\mathbf{u}}\| \|ec{\mathbf{v}}\| \cos(heta).$$

Can be proven using the law of Cosines (page 719).

Angle example

$$\boldsymbol{\theta} = \arccos\left(\frac{\vec{\mathbf{u}}\cdot\vec{\mathbf{v}}}{\|\vec{\mathbf{u}}\|\|\vec{\mathbf{v}}\|}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Example

Find the angle between $\vec{u} = \vec{i} - 2\vec{j} - 2\vec{k}$ and $\vec{v} = 6\vec{i} + 3\vec{j} + 2\vec{k}$.

Angle example

$$\theta = \arccos\left(\frac{\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}}{\|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\|}\right)$$

Example

Find the angle between $\vec{\mathbf{u}} = \vec{\mathbf{i}} - 2\vec{\mathbf{j}} - 2\vec{\mathbf{k}}$ and $\vec{\mathbf{v}} = 6\vec{\mathbf{i}} + 3\vec{\mathbf{j}} + 2\vec{\mathbf{k}}$. We have $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 1(6) - 2(3) - 2(2) = -4$, $\|\vec{\mathbf{u}}\| = \sqrt{1^2 + (-2)^2 + (-2)^2} = 3$, and $\|\vec{\mathbf{v}}\| = \sqrt{6^2 + 3^2 + 2^2} = 7$. Thus,

$$heta = \arccos\left(-rac{4}{21}
ight) pprox 1.762
m rad pprox 100.98^{\circ}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Orthogonal Vectors

We want to extend the idea of *perpendicular* to more than 2 dimensions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We want to extend the idea of *perpendicular* to more than 2 dimensions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Definition Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are orthogonal if $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$.

Orthogonal examples

Definition Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are <u>orthogonal</u> if $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

Let $\vec{u}=\langle 3,-2\rangle$ and $\vec{v}=\langle 4,6\rangle.$ Then

Orthogonal examples

Definition Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are orthogonal if $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$.

Example

Let $\vec{u} = \langle 3, -2 \rangle$ and $\vec{v} = \langle 4, 6 \rangle$. Then $\vec{u} \cdot \vec{v} = 3(4) + (-2)(6) = 0$. So \vec{u} and \vec{v} are orthogonal.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Orthogonal examples

Definition Vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ are <u>orthogonal</u> if $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = 0$.

Example

Let $\vec{u} = \langle 3, -2 \rangle$ and $\vec{v} = \langle 4, 6 \rangle$. Then $\vec{u} \cdot \vec{v} = 3(4) + (-2)(6) = 0$. So \vec{u} and \vec{v} are orthogonal.

Example

Similarly, $\vec{\mathbf{0}}$ and any other vector are orthogonal, since $\vec{\mathbf{0}} \cdot \vec{\mathbf{u}} = 0(u_1) + 0(u_2) + 0(u_3) = 0$.