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Vectors

The direction is where the arrow points and the length is how long
the arrow is.

A vector models any application where force is involved: velocity,
displacement, work, etc.

x

y

~u

(x1, y1)
(x2, y2)

~u
(x2 − x1, y2 − y1)

Since it doesn’t matter where we draw a vector, we will usually
place the initial point at the origin. This is called standard position.



Standard Position

Definition
If a vector ~v goes from (x1, y1, z1) to (x2, y2, z2), then the same
vector in standard position goes from (0, 0, 0) to
(x2 − x1, y2 − y1, z2 − z1). In this case we write

~v = 〈x2 − x1, y2 − y1, z2 − z1〉.

〈u1, u2, u3〉 = 〈v1, v2, v3〉 ⇔ u1 = v1, u2 = v2, and u3 = v3



Length/Magnitude

The length of a vector is simply the distance from its initial point
to its terminal point.

Definition
If ~v = 〈v1, v2, v3〉, then the length of ~v is

‖~v‖ = |~v| =
√
v21 + v22 + v23 .

Example

The length of 〈7, 3,−2〉 is
√

49 + 9 + 4 =
√

62.



Vector Algebra

Given two vectors, we will now describe different ways to combine
them, which will turn the set of vectors into something we can
manipulate algebraically.

Definition
If ~u = 〈u1, u2, u3〉, ~v = 〈v1, v2, v3〉, and k ∈ R, then we have the
following operations:
Vector addition:

~u +~v = 〈u1 + v1, u2 + v2, u3 + v3〉

Scalar multiplication:

k~u = 〈ku1, ku2, ku3〉.

This means we can add two vectors and multiply vectors by
numbers.
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Vector Algebra

These operations have a geometric meaning.

w
v v +

w

2 · w
v v + 2 · w

Vector addition corresponds to following first one vector and then
the other to the resulting location. Scalar multiplication
corresponds to stretching/shrinking a vector without changing its
direction.



Vector Algebra

Example

Let ~v = 〈2, 4〉 and ~u = 〈−4, 6〉. Find the component form of
1
2(~v + ~u).

1

2
(~v + ~u) =

1

2
(〈2, 4〉+ 〈−4, 6〉) =

1

2
〈−2, 10〉 = 〈−1, 5〉.
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Properties (page 712)

1. ~u +~v = ~v + ~u

2. (~u +~v) + ~w = ~u + (~v + ~w)

3. ~u + ~0 = ~u

4. ~u + (−~u) = ~0

5. 0~u = ~0

6. 1~u = ~u

7. a(b~u) = (ab)~u

8. a(~u +~v) = a~u + a~v

9. (a + b)~u = a~u + b~u



Properties

3. ~u + ~0 = ~u

Let ~u = 〈u1, u2, u3〉.

~u + ~0 Left hand side of equation

= 〈u1, u2, u3〉+ 〈0, 0, 0〉 Definition of vectors

= 〈u1 + 0, u2 + 0, u3 + 0〉 Vector addition

= 〈u1, u2, u3〉 0 additive identity

= ~u Right hand side of equation
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Unit Vectors

We can change the length of a vector with scalar multiplication, so
we are interested in vectors that have length 1. These vectors have
a specific name.

Definition
A vector ~v is a unit vector if its length is 1.

Example

~v = 〈
√
2
2 ,
√
2
2 〉 is a unit vector because

‖~v‖ =

√(√
2
2

)2

+

(√
2
2

)2

= 1.
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Standard Unit Vectors

In 3D, we have special unit vectors which point in the direction of
the x−, y− and z-axes.

Definition
The standard unit vectors are~i = 〈1, 0, 0〉,~j = 〈0, 1, 0〉, and
~k = 〈0, 0, 1〉.
We can break up any vector as
~v = 〈v1, v2, v3〉 = 〈v1, 0, 0〉+ 〈0, v2, 0〉+ 〈0, 0, v3〉 = v1~i+ v2~j+ v3~k.
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Vectors

Note that we can always change a (nonzero) vector to a unit
vector in the same direction by dividing by its length, that is,(

1
‖~v‖
)
~v is a unit vector in the direction of ~v.

Example

Find a unit vector in the direction of ~u = 2~i + 3~j− 4~k.

‖~u‖ =
√

22 + 32 + (−4)2 =
√

29. Thus the vector

~u

‖~u‖
=

2√
29
~i +

3√
29
~j− 4√

29
~k

is a unit vector in the direction of ~u.
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§12.3 The dot product

The dot product of two vectors gives us geometric information
about the angle between the vectors.

Definition
Let ~u = 〈u1, u2, u3〉 and ~v = 〈v1, v2, v3〉. Then

~u ·~v = u1v1 + u2v2 + u3v3

is the dot product of ~u and ~v.

The dot product of two vectors is a number, not a vector.
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Dot product example

Example

〈1,−2,−1〉 · 〈−6, 2,−3〉 =

(1)(−6) + (−2)(2) + (−1)(−3) = −7.
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Angles

The dot product tells us something about the angles between two
vectors.

Let ~u and ~v be nonzero vectors. If θ is the angle between ~u and ~v,
then

θ = arccos

(
~u ·~v
‖~u‖‖~v‖

)
.

Two other ways of saying this are

cos(θ) =
~u ·~v
‖~u‖‖~v‖

or ~u ·~v = ‖~u‖‖~v‖ cos(θ).

Can be proven using the law of Cosines (page 719).
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Angle example

θ = arccos

(
~u ·~v
‖~u‖‖~v‖

)
Example

Find the angle between ~u =~i− 2~j− 2~k and ~v = 6~i + 3~j + 2~k.

We have ~u ·~v = 1(6)− 2(3)− 2(2) = −4,
‖~u‖ =

√
12 + (−2)2 + (−2)2 = 3, and ‖~v‖ =

√
62 + 32 + 22 = 7.

Thus,

θ = arccos

(
− 4

21

)
≈ 1.762 rad ≈ 100.98◦.
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Orthogonal Vectors

We want to extend the idea of perpendicular to more than 2
dimensions.

Definition
Vectors ~u and ~v are orthogonal if ~u ·~v = 0.
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Orthogonal examples

Definition
Vectors ~u and ~v are orthogonal if ~u ·~v = 0.

Example

Let ~u = 〈3,−2〉 and ~v = 〈4, 6〉. Then

~u ·~v = 3(4) + (−2)(6) = 0.
So ~u and ~v are orthogonal.

Example

Similarly, ~0 and any other vector are orthogonal, since
~0 · ~u = 0(u1) + 0(u2) + 0(u3) = 0.
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